Prevention of UV-induced damage to the anterior segment using class I UV-absorbing hydrogel contact lenses.

نویسندگان

  • Heather L Chandler
  • Kathleen S Reuter
  • Loraine T Sinnott
  • Jason J Nichols
چکیده

PURPOSE To determine whether class I ultraviolet (UV) light-blocking contact lenses prevent UV-induced pathologic changes in a rabbit model. METHODS Twelve rabbits were assigned to 1 of 3 treatment groups (n = 4), as follows: senofilcon A (class I UV blocking) contact lenses; lotrafilcon A contact lenses (no reported UV blocking); no contact lens. The contralateral eye was patched without a contact lens. Animals received UV-B (1.667 J/cm(2)) exposure daily for 5 days. Postmortem tissue was examined as follows: in the cornea, the expression of matrix-metalloproteinases (MMPs) was evaluated by zymography, and apoptosis was evaluated by TUNEL and caspase-3 ELISA; ascorbate in the aqueous humor was evaluated by nuclear magnetic resonance spectroscopy; crystalline lens apoptosis was evaluated by TUNEL and caspase-3 ELISA. RESULTS Exposed corneas showed a significant increase in MMP-2 and -9, TUNEL-positive cells, and caspase-3 activity in the lotrafilcon A group compared with the senofilcon A group (all P = 0.03). A significant decrease in aqueous humor ascorbate was observed in the exposed lotrafilcon A lens-wearing group compared with the exposed senofilcon A lens-wearing group (P = 0.03). Exposed crystalline lenses had significantly increased caspase-3 activity in the lotrafilcon A group compared with the senofilcon A group (P = 0.03). Increased numbers of TUNEL-positive cells were noted in both the lotrafilcon A and the non-contact lens groups. CONCLUSIONS The authors show that senofilcon A class I UV-blocking contact lenses are capable of protecting the cornea, aqueous humor, and crystalline lens of rabbits from UV-induced pathologic changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of lens photodamage by UV-absorbing contact lenses.

PURPOSE To determine whether class 1 UV-blocking contact lenses protect against UVB radiation-induced damage in a human lens epithelial cell line (HLE B-3) and postmortem human lenses using a proteomics approach. METHODS HLE B-3 cells were exposed to 6.4 mW/cm(2) UVB radiation at 302 nm for 2 minutes (768 mJ/cm(2)) with or without covering by senofilcon A class 1 UV-blocking contact lenses or...

متن کامل

The study of Lysozyme adsorption onto 2-hydroxyethylmethacrylates and Silicon Hydrogel Contact Lenses

In order to increase the water content and the oxygen permeability of hydrogels used in themanufacture of contact lenses, the polar monomer Silicon Hydrogel Contact Lenses (SHCL), and 2-hydroxyethyl methacrylate (HEMA) were copolymerized with the hydrogels. Due to the presence ofpolar monomers in the conventional contact lenses, the major component of the human tear,lysozyme is extensively adso...

متن کامل

Corneal and retinal effects of ultraviolet-B exposure in a soft contact lens mouse model.

PURPOSE To investigate the lipid and DNA oxidative stress as well as corneal and retinal effects after ultraviolet B (UV-B) exposure in mice, with or without silicon hydrogel soft contact lenses (SCL). METHODS Twenty-eight C57BL6-strain male mice were divided into four groups: group I, control group with no SCL (SCL [-]) and no UV-B exposure (UV-B [-]); group II, senofilcon A SCL (senofilcon ...

متن کامل

In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

PURPOSE The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. METHODS Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and ...

متن کامل

UV-Visible Transmittance of Silicone-Hydrogel Contact Lenses measured with a fiber optic spectrometer

Protein deposition is one of the most frequent contaminants occurring on hydrophilic contact lenses and may modify the lens optical properties. The silicone-hydrogel contact lenses usually adsorb a lower amount of proteins than the conventional hydrogel ones. However it is important to study the influence of protein deposits on some silicone-hydrogel contact lenses properties, such as UV-Visibl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 51 1  شماره 

صفحات  -

تاریخ انتشار 2010